
Journal of Computational Physics 228 (2009) 8548–8565
Contents lists available at ScienceDirect

Journal of Computational Physics

journal homepage: www.elsevier .com/locate / jcp
Optimal block-tridiagonalization of matrices for coherent charge transport

Michael Wimmer *, Klaus Richter
Institut für Theoretische Physik, Universität Regensburg, 93040 Regensburg, Germany

a r t i c l e i n f o
Article history:
Received 17 June 2008
Received in revised form 12 February 2009
Accepted 3 August 2009
Available online 12 August 2009

MSC:
05C50
05C78

PACS:
72.10.Bg
02.70.�c
02.10.Ox

Keywords:
Coherent quantum transport
Recursive Green’s function algorithm
Block-tridiagonal matrices
Matrix reordering
Graph theory
0021-9991/$ - see front matter � 2009 Elsevier Inc
doi:10.1016/j.jcp.2009.08.001

* Corresponding author. Tel.: +49 941 943 2016;
E-mail address: Michael.Wimmer@physik.uni-re
a b s t r a c t

Numerical quantum transport calculations are commonly based on a tight-binding formu-
lation. A wide class of quantum transport algorithms require the tight-binding Hamiltonian
to be in the form of a block-tridiagonal matrix. Here, we develop a matrix reordering algo-
rithm based on graph partitioning techniques that yields the optimal block-tridiagonal
form for quantum transport. The reordered Hamiltonian can lead to significant perfor-
mance gains in transport calculations, and allows to apply conventional two-terminal
algorithms to arbitrarily complex geometries, including multi-terminal structures. The
block-tridiagonalization algorithm can thus be the foundation for a generic quantum trans-
port code, applicable to arbitrary tight-binding systems. We demonstrate the power of this
approach by applying the block-tridiagonalization algorithm together with the recursive
Green’s function algorithm to various examples of mesoscopic transport in two-dimen-
sional electron gases in semiconductors and graphene.

� 2009 Elsevier Inc. All rights reserved.
1. Introduction

If the dimensions of a device become smaller than the phase coherence length l/ of charge carriers, classical transport
theories are not valid any more. Instead, carrier dynamics is now governed by quantum mechanics, and the wave-like nature
of particles becomes important. In general, the conductance/resistance of such a device does not follow Ohm’s law.

In the regime of coherent quantum transport, the Landauer–Büttiker formalism [1–3] relates the conductance G of a de-
vice to the total transmission probability T of charge carriers through the device,
G ¼ e2

h
T ¼ e2

h

X
mn

jtmnj2; ð1Þ
where tmn is the transmission amplitude between different states with transverse quantum numbers n and m in the left and
right lead, respectively. A state with a given transverse quantum number n is also called channel n.

The problem of calculating the conductance is thus reduced to calculating scattering eigenfunctions w for a given energy
E:
. All rights reserved.

fax: +49 941 943 4382.
gensburg.de (M. Wimmer).

http://dx.doi.org/10.1016/j.jcp.2009.08.001
mailto:Michael.Wimmer@physik.uni-regensburg.de
http://www.sciencedirect.com/science/journal/00219991
http://www.elsevier.com/locate/jcp

Fig. 1.
structu

M. Wimmer, K. Richter / Journal of Computational Physics 228 (2009) 8548–8565 8549
ðE� HÞw ¼ 0; ð2Þ
where H is the Hamiltonian of the system. Alternatively, the transmission probability can be extracted from the retarded
Green’s function Gr that obeys the equation of motion
ðE� HÞGr ¼ 1: ð3Þ
The Fisher–Lee relation [4,5] then allows to calculate the transmission ðtmnÞ and reflection ðrnmÞ amplitudes from Gr. In its
simplest form, the Fisher–Lee relation reads
tmn ¼ �i�h
ffiffiffiffiffiffiffiffiffiffiffiffi
vmvn
p Z

CR

dy
Z

CL

dy0/mðyÞG
Rðx;x0Þ/nðy0Þ ð4Þ
and
rmn ¼ dmn � i�h
ffiffiffiffiffiffiffiffiffiffiffiffi
vmvn
p Z

CL

dy
Z

CL

dy0/mðyÞGRðx;x0Þ/nðy0Þ; ð5Þ
where vn is the velocity of channel n and the integration runs over the cross-section CLðCRÞ of the left (right) lead.
The Landauer–Büttiker formalism can also deal with multi-terminal systems, but is restricted to linear response, i.e. small

bias voltages. In the general case including external bias, the conductance can be calculated using the non-equilibrium
Green’s function formalism (see e.g. [6]).

Except for particularly simple examples, solving Eqs. (2) and (3) exactly is not possible, and therefore a numerical com-
putation is often the method of choice. Instead of solving directly a differential equation with its continuous degrees of free-
dom, such as the Schrödinger equation, numerical computations are usually only attempted within a discrete basis set. The
differential equation is replaced by a set of linear equations, and the Hamiltonian H can be written as a matrix. Very often,
only few of the matrix elements Hij are nonzero. Such tight-binding representations of the Hamiltonian are ubiquitous in
quantum transport calculations and can arise from finite differences [7–9], from the finite element method [10], from atomic
orbitals in empirical tight-binding [11–13] or Kohn–Sham orbitals within density functional theory [14–16].

When describing transport, the systems under consideration are open and thus extend to infinity. As a consequence, the
tight-binding matrix H is infinite-dimensional. However, the conductance calculation can be reduced to a finite problem by
partitioning the system into a finite scattering region attached to leads that extend to infinity, as schematically depicted in
Fig. 1(a). For the case of two-terminals, the matrix H can be written as
H ¼
HL VLS 0
VSL HS VSR

0 VRS HR

0
B@

1
CA; ð6Þ
where HLðRÞ is the (infinite) Hamiltonian of the left (right) lead, HS is the Hamiltonian of the scattering region and of finite
size. The matrices VSL ¼ V yLS and VSR ¼ V yRS represent the coupling between the scattering region and the left and right lead,
respectively.

In order to reduce the problem size, it is useful to introduce the retarded self-energy Rr ¼
P

i¼L;RVSigr
i V iS, where gr

LðRÞ is the
surface Green’s function of the left (right) lead, i.e. the value of the Green’s function at the interface of the lead disconnected
from the scattering region. Then, the Green’s function Gr

S of the scattering region can be calculated as [17,18]
Gr
S ¼ E� HS � Rrð Þ�1 ð7Þ
reminiscent of Eq. (3) but with an effective Hamiltonian HS þ Rr of finite size. This treatment is easily extended to multi-ter-
minal systems.

Note that it suffices to know the surface Green’s function of the (semi-)infinite leads, as in a tight-binding Hamiltonian the
matrices VSL and VSR have only few nonzero entries. For simple systems, the surface Green’s function can be calculated ana-
(a) Schematic view of a finite difference grid in a two-terminal transport setup. (b) Natural ordering of grid points yielding a block-tridiagonal matrix
re. The different matrix blocks are marked in alternating shades of grey.

8550 M. Wimmer, K. Richter / Journal of Computational Physics 228 (2009) 8548–8565
lytically [17,18], whereas in more complex situations it must be computed numerically, either by iteration [19,20], or by
semi-analytical formulas [12,21,16].

The original infinite-dimensional problem has thus been reduced to a finite size matrix problem that can, in principle,
be solved straight-forwardly on a computer. However, for any but rather small problems, the computational task of the
direct inversion in Eq. (7) is prohibitive. Therefore, for two-terminal transport, many algorithms make use of the sparsity
of the Hamiltonian matrix in tight-binding representation—in particular that this matrix can be written in block-tridiag-
onal form:
ð8Þ
where the index LðRÞ denotes the blocks in the left (right) lead, 1; . . . ;N the blocks within the scattering region, and 0ðN þ 1Þ
the first block in the left (right) lead.

This block-tridiagonal form of the Hamiltonian is the foundation of several quantum transport algorithms for two-termi-
nal systems. The transfer matrix approach applies naturally to block-tridiagonal Hamiltonians, but becomes unstable for lar-
ger systems. However, a stabilized version has been developed by Usuki et al. [22,23]. In the decimation technique [24,25],
the Hamiltonian of the scattering region is replaced by an effective Hamiltonian between the two leads by eliminating inter-
nal degrees of freedom. The contact block reduction method [26] calculates the full Green’s function of the system using a
limited set of eigenstates. The recursive Green’s function (RGF) technique [27–29] uses Dyson’s equation to build up the sys-
tem’s Green’s function block by block. It has also been adapted to Hall geometries with four-terminals [30] and to calculate
non-equilibrium densities [31,32]. Furthermore, the RGF algorithm has been formulated to be suitable for parallel computing
[33].

The block-tridiagonal form of H arises naturally, for example, in the method of finite differences, when grid points are
grouped into vertical slices according to their x-coordinates, as shown in Fig. 1(b). In fact most of the above mentioned quan-
tum transport algorithms are based on this natural ordering. Because of this, these algorithms are in general restricted to sys-
tems with two collinear leads. In a more complicated system, e.g. with non-collinear or multiple leads, a block-tridiagonal
form is not obvious or involves only a few, very large blocks. In these cases, a direct application of the above mentioned
transport algorithms is either very inefficient or even impossible. These restrictions will be lifted in the course of this work.

Of course, there are also other transport techniques not directly based on the block-tridiagonal form of the Hamiltonian
matrix, such as extracting the Green’s function from wave packet dynamics [34]. Still, such algorithms are not as widely used
as the large class of algorithms that are directly based on the block-tridiagonal form of the Hamiltonian. In order to illustrate
the typical computational tasks of this class of algorithms, we briefly explain, as a representative example, the RGF
algorithm.

The RGF technique is based on Dyson’s equation Gr ¼ Gr
0 þ Gr

0VGr (see e.g [29]), where Gr denotes the Green’s function of
the perturbed system, Gr

0 that of the unperturbed system and V the perturbation. Using this equation, the system is built up
block by block, as depicted in Fig. 2. Let Gr;ðiÞ denote the Green’s function for the system containing all blocks P i. Then, at
energy E, the Green’s function Gr;ði�1Þ is related to Gr;ðiÞ by
Gr;ði�1Þ
i�1;i�1 ¼ E� Hi�1;i�1 � Hi�1;iG

r;ðiÞ
i;i Hi;i�1

� ��1
ð9Þ
and
Gr;ði�1Þ
Nþ1;i�1 ¼ Gr;ðiÞ

Nþ1;iHi;i�1Gr;ði�1Þ
i�1;i�1: ð10Þ

Fig. 2. Schematic depiction of the recursive Green’s function algorithm: (a) the Green’s function Gr;ðiÞ contains all blocks P i and (b) the Green’s function
Gr;ði�1Þ is obtained by adding another matrix block.

M. Wimmer, K. Richter / Journal of Computational Physics 228 (2009) 8548–8565 8551
Starting from Gr;ðNþ1Þ
Nþ1;Nþ1 ¼ gr

R, the surface Green’s function of the right lead, N slices are added recursively, until Gr;ð1Þ has been
calculated. The blocks of the Green’s function of the full system necessary for transport are then given by
Gr
0;0 ¼ gr

L

� ��1 � H0;1Gr;ð1Þ
1;1 H1;0

� ��1
ð11Þ
and
Gr
Nþ1;0 ¼ Gr;ð1Þ

Nþ1;1H1;0Gr
0;0; ð12Þ
where gr
L is the surface Green’s function of the left lead. Gr

0;0 and Gr
Nþ1;0 are sufficient to calculate transmission and reflection

probabilities via the Fisher–Lee relation, Eqs. (4) and (5).
Each step of the algorithm performs inversions and matrix multiplications with matrices of size Mi. Since the computa-

tional complexity of matrix inversion and multiplications scales as M3
i , the complexity of the RGF algorithm is /

PNþ1
i¼0 M3

i .
Thus, it scales linearly with the ‘‘length” N, and cubically with the ‘‘width” Mi of the system. This scaling also applies to most
of the other transport algorithms mentioned above.

While for particular cases general transport algorithms, such as the RGF algorithm, cannot compete with more specialized
algorithms, such as the modular recursive Green’s function technique [35,36] that is optimized for special geometries, they
are very versatile and easily adapted to two-terminal geometries—provided that the system has only two leads that are ar-
ranged collinearly.

The objective of this work is twofold: first, we intend to lift the discussed restrictions of the established quantum trans-
port algorithms. We do this by bringing the Hamiltonian matrix H into a block-tridiagonal form suitable for quantum trans-
port also for complex geometries, such as non-collinear leads or multi-terminal structures, that would otherwise need the
development of specialized algorithms. Second, we improve the matrix H such that the block-tridiagonal form is optimal for
transport. Although the block-tridiagonal structure of H, Eq. (8), that arises naturally in many problems appears to have a
small ‘‘width” and thus seems to be quite suitable for transport algorithms, optimizing the matrix structure further may lead
to significant speed-ups even in the two-terminal case, as we show below.

We achieve these goals by developing a matrix reordering algorithm that brings an arbitrary tight-binding matrix H into a
block-tridiagonal form optimal for quantum transport. This algorithm is based on recursive bisection as well as graph and
hypergraph partitioning techniques. To this end, the paper is organized as follows: in Section 2 we formulate the matrix reor-
dering problem in the language of graph theory and develop the reordering algorithm. In Section 3 we apply this algorithm to
various examples and investigate its performance and the performance of the RGF algorithm for the reordered Hamiltonian
H. We conclude in Section 4.

2. Optimal block-tridiagonalization of matrices

2.1. Definition of the problem

2.1.1. Definition of the matrix reordering problem
As shown in the introduction, the typical runtime of transport algorithms is proportional to

PNþ1
i¼0 M3

i , and hence does de-
pend on the particular block-tridiagonal structure of H. Therefore, the runtime of these algorithms can be improved in prin-
ciple by conveniently reordering H with a permutation P,
H0 ¼ P H P�1: ð13Þ
In order to quantify the typical performance of a transport algorithm for a given matrix structure, we define a weight wðHÞ
associated with a matrix H as

Fig. 3.
are sho

8552 M. Wimmer, K. Richter / Journal of Computational Physics 228 (2009) 8548–8565
wðHÞ ¼
XNþ1

i¼0

M3
i ; ð14Þ
where Mi is the size of block Hi;i. Optimizing the matrix for transport algorithms is then equivalent to minimizing the weight
wðHÞ. Since

PNþ1
i¼0 Mi ¼ Ngrid, where N grid is the total number of grid points, wðHÞ is minimal, if all Mi are equal,

Mi ¼ Ngrid=ðN þ 2Þ. Therefore, a matrix tends to have small weight, if the number N of blocks is large, and all blocks are
equally sized. The numerical experiments of Section 3 will confirm that the weight wðHÞ is a good measure of the actual per-
formance of a quantum transport algorithm.

The reordering problem of the matrix H is thus summarized as follows:

Problem 2.1. Matrix reordering problem: Find a reordered matrix H0 such that

1. H00;0 and H0Nþ1;Nþ1 are blocks given by the left and right leads (as required by transport algorithms).
2. H0 is block-tridiagonal ðH0i;j – 0; iff j ¼ iþ 1; i; i� 1Þ.
3. The number N of blocks is as large as possible, and all blocks are equally sized.

In principle, this constrained optimization problem could be solved by generic optimization algorithms, such as Simulated
Annealing. However, for larger problems the optimization could take much more time than the actual transport calculation,
rendering the optimization process useless. It is therefore necessary to use heuristics especially designed for the problem at
hand. To this end, we formulate the matrix reordering problem in the language of graph theory.

2.1.2. Mapping onto a graph partitioning problem
A graph G is an ordered pair G ¼ ðV; EÞ, where V is a set of vertices v and E a set of ordered pairs of vertices ðv1;v2Þ 2 V � V.

Such a pair is called an edge. A graph is called undirected, if for every edge ðv1;v2Þ 2 E also ðv2;v1Þ 2 E. Two vertices v1 and v2

are called adjacent, if ðv1;v2Þ 2 E. In order to simplify the notation, we will also consider a vertex v to be adjacent to itself. An
edge ðv1;v2Þ is said to be incident to a vertex v i, iff v1 ¼ v i or v2 ¼ v i.

There is a natural one-to-one correspondence between graphs and the structure of sparse matrices. For a given n� n ma-
trix H, we define a graph G ¼ ðV; EÞwith V ¼ fv1; . . . ;vng and ðv i;v jÞ 2 E iff the entry Hij – 0. Furthermore, the diagonal of H is
assumed to be nonzero (as every vertex v is adjacent to itself). This is an appropriate assumption for matrices H encountered
in transport problems, as the quantum transport algorithms usually deal with E� H, where E is a number (for example, see
Eq. (9)).

A graph thus stores information about the structure of a matrix, i.e. which entries are nonzero. It does not contain any
information about the values of the respective entries, although these may be stored easily along with the graph. However,
for the formulation of the quantum transport algorithms, only the block-tridiagonal form, i.e. the structure of the matrix, is
relevant. Hermitian matrices that are considered in quantum transport have a symmetric structure of zero and nonzero en-
tries, and therefore the corresponding graphs are undirected.

An example of a matrix and its graph representation is shown in Fig. 3(a) and (b). Here, the graph is depicted by drawing
dots for every vertex v, and lines connecting these dots for every edge ðv1;v2Þ. It should be noted that a graphical represen-
tation of a tight-binding grid, such as shown in Fig. 1(a), can be directly interpreted as a representation of a graph and the
corresponding matrix structure.

A hypergraph H is an ordered pair H ¼ ðV;NÞ, where V is a set of vertices, and N a set of nets ni (also called hyperedges)
between them. A net ni is a set of vertices, i.e. ni � V. A net nj is said to be incident to a vertex v i, iff v i 2 nj. An undirected
graph is a special realization of a hypergraph, where every net contains exactly two vertices.

The structure of a sparse matrix may also be represented by a hypergraph [37,38]. In the column-net model, a matrix H is
represented by a hypergraphHðV;NÞ, such that there is a vertex v i for every row and a net nj for every column of the matrix.
The net nj contains the vertices corresponding to the rows that have a nonzero entry in column j, i.e. v i 2 nj iff Hij – 0. Alter-
natively, the matrix H may also be represented in the row-net model, where the role of rows and columns is reverted with
respect to the column-net model. In the case of structurally symmetric matrices as considered for quantum transport, the
column-net and row-net model are identical. In the following we will therefore only employ the term hypergraph model.
Simple example of a matrix with a symmetric structure and its graph and hypergraph representations: (a) matrix, (b) graph, and (c) hypergraph (nets
wn in different color).

M. Wimmer, K. Richter / Journal of Computational Physics 228 (2009) 8548–8565 8553
There is a particularly simply connection between the graph and hypergraph models G ¼ ðV; EÞ and H ¼ ðV;NÞ of a struc-
turally symmetric matrix with nonzero diagonal: in this case, the net nj contains the vertex v j and all adjacent vertices,
nj ¼ fv 2 Vjv is adjacent to v jg; ð15Þ
i.e. a net of the hypergraph contains complete information about the adjacent vertices of a given vertex. Fig. 3(a) and (c)
shows an example of a matrix and the corresponding hypergraph model.

In principle, the hypergraph models are more general than the graph representation, as they can also describe any sparse
matrix, including nonsymmetric rectangular matrices. Since the Hamiltonian matrices encountered in transport calculations
are always structurally symmetric and square, using the hypergraph representations may at first glance seem unnecessary,
as the simpler graph representation is enough. However, it should be noted that the graph and hypergraph representation
carry different information: whereas the edges of the graph model represent individual entries, the nets of the hypergraph
model represent entire columns. This distinction will be of importance in Section 2.2.2, where both the graph and the hyper-
graph model will be employed simultaneously. Until then, the graph representation will be sufficient.

In terms of graph theory, matrix reordering corresponds to renumbering the vertices of a graph. Since we are only inter-
ested in reordering the matrix in terms of matrix blocks (the order within a block should not matter too much), we define a
partitioning of G as a set fV ig of disjoint subsets V i � V such that

S
iV i ¼ V and V i \ V j ¼ ; for i – j. Using these concepts, we

can now reformulate the original matrix reordering problem into a graph partitioning problem:

Problem 2.2. Partitioning problem: Find a partitioning fV0; . . . ;VNþ1g of G such that:
(i) V0 and VNþ1 contain the vertices belonging to left and right leads,

(ii) (a) vertices in V0 and VNþ1 are only connected to vertices in V1 and VN , respectively,
(b) for 0 < i < N þ 1, there are edges between V i and V j iff j ¼ iþ 1; i; i� 1,

(iii) the number N þ 2 of sets V i is as large as possible, and all sets V i have the same cardinality jV ij. A partitioning with all
jV ij equally sized is called balanced.
A partitioning obeying requirement 2.2.ii is called a level set with levels V i [39]. Level sets appear commonly as an inter-
mediate step in algorithms for bandwidth reduction of matrices [39–42]. These algorithms seek to find a level set of minimal
width, i.e. maxi¼0;...;Nþ1jV ij as small as possible which is equivalent to requirement 2.2.iii. The main difference between our
graph partitioning problem and the bandwidth reduction problem is requirement 2.2.i: in the partitioning problem, V0

and VN are determined by the problem at hand, while in the bandwidth reduction problem these can be chosen freely.
Due to this difference, bandwidth reduction algorithms can be applied successfully to our partitioning problem only for spe-
cial cases, as we show below.

The term graph (hypergraph) partitioning usually refers to the general problem of finding a balanced partitioning fV ig of a
graph (hypergraph) with the objective of minimizing the number of edges (nets) between different parts. Graph and hyper-
graph partitioning has many applications in various fields such as very-large-scale integration (VLSI) design [43–46], sparse
matrix reorderings for LU or Cholesky decompositions [47], or block ordering of sparse matrices for parallel computation
[48–53]. In particular, the latter examples also include block-tridiagonal orderings [49,50]. However, as these reorderings
are geared towards parallel computation, they obtain a fixed number N of sets V i given by the number of processors of a par-
allel computer, whereas in our block-tridiagonal reordering the number N should be as large as possible. In addition to that,
the constraints on the blocks V0 and VNþ1 (requirement 2.2.i) are again not present there.

As we cannot directly employ existing techniques to solve the partitioning problem, we will develop an algorithm combining
ideas from both bandwidth reduction and graph as well as hypergraph partitioning techniques in the subsequent sections: con-
cepts from bandwidth reduction are employed to construct a level set which is then balanced using concepts from graph theory.

2.2. Matrix reordering by graph partitioning

2.2.1. A local approach—breadth-first-search
A breadth-first-search (BFS) [54] on a graph immediately yields a level set [39–42]. In our particular example, the level set

is constructed as follows:

Algorithm 1. Level set construction by breadth-first-search.

A. Start from i ¼ 0. Then, V i ¼ V0, as the first level is given by the constraints of requirement 2.2.i.
B. If there is a vertex in V i that is adjacent to a vertex in VNþ1, assign all the remaining unassigned vertices into VNþ1 and

end the algorithm.
C. All vertices adjacent to V i not contained in the previous levels V i;V i�1; . . . ;V0 are assigned to V iþ1.
D. Continue at step B with i ¼ iþ 1.

Note that the sets fV ig form a level set by construction—a set V i may only have vertices adjacent to V i�1 and V iþ1. The
construction by BFS not only obtains the number of levels N þ 2 for a particular realization, but yields a more general
information:

8554 M. Wimmer, K. Richter / Journal of Computational Physics 228 (2009) 8548–8565
Lemma 2.3. The number of levels N þ 2 in the level set constructed by Algorithm 1 is the maximum number of levels compatible
with the constraints on the initial and final level V0 and VNþ1 for a graph G.

This can be seen from the fact that a BFS finds the shortest path in the graph between the initial sets V0 and VNþ1,
ðv0;v1; . . . ;v i; . . . ;vNþ1Þ, where v0 2 V0 and vNþ1 2 VNþ1. Any vertex on this shortest path can be uniquely assigned to a single
level V i and it would not be compatible with a larger number of levels than N þ 2.

Algorithm 1 not only yields the maximum number of levels: all vertices contained in the first n levels of the BFS must be
contained in the first n levels of any other level set:

Lemma 2.4. Let fV0;V1; . . . ;VNþ1g be a level set constructed by Algorithm 1, and fV 00;V 01; . . . ;V 0N0þ1g another level set consistent
with the requirements of Problem 2.2 with N0 6 N. Then V0 [V1 [� � � [Vn � V 00 [V 01 [� � � [V 0n for 0 6 n 6 N 0 þ 1.

The statement is proved by induction. It is true trivially for n ¼ 0 (because of requirement i in Problem 2.2) and for
n ¼ N0 þ 1 (then the levels cover the whole graph). Suppose now that the statement holds for n < N0. Note that for the proof
it suffices to show that Vnþ1 � V 00 [V 01 [� � � [V 0nþ1. Consider now the set of all vertices adjacent to Vn; adjacentðVnÞ ¼
fv 2 Vjv is adjacent to some v 0 2 Vng. By construction, Vnþ1 � adjacentðVnÞ. Since Vn � V 00 [V 01 [� � � [V 0n and fV 0i g is a level
set, all vertices adjacent to Vn must be contained in the set of vertices including the next level, i.e.
adjacentðVnÞ � V 00 [V 01 [� � � [V 0n [V 0nþ1. But then also Vnþ1 � V 00 [V 01 [� � � [V 0nþ1, which concludes the proof.

Thus, the vertices contained in the first n levels of the BFS form a minimal set of vertices needed to construct n levels.
However, this also implies that the last level, which then covers the remaining vertices of the graph, may contain many more
vertices than the average, leading to an unbalanced level set. This is not surprising, since the algorithm does not explicitly
consider balancing and only local information is used, i.e. whether a vertex is adjacent to a level or not. An example for this
imbalance is shown in Fig. 4, where the BFS construction yields a very large last level.

Note that throughout the manuscript we visualize the graph theoretical concepts using examples of graphs obtained from
discretizing a two-dimensional Hamiltonian using the method of finite differences. However, the ideas and algorithms pre-
sented here apply to any graph and are not limited to graphs with coordinate information. Two-dimensional graphs have the
advantage of being visualized easily. In particular, the BFS search has an intuitive physical analog: wave front propagation of
elementary waves emanating from the vertices of the initial level V0.

The problem that a BFS does not yield a balanced partitioning was also noted in the theory of bandwidth reduction. The
Gibbs–Poole–Stockmeyer (GPS) algorithm tries to overcome this deficiency by constructing a level set through the combi-
nation of two BFS searches starting from the initial and the final levels. However, there the initial and final levels are sought
to be furthest apart, contrary to our problem. In general, the GPS construction only yields a balanced level set if the initial and
final level are close to furthest apart, as we will show in Section 3.

2.2.2. A global approach—recursive bisection
In order to obtain a balanced partitioning, graph partitioning algorithms commonly perform a recursive bisection, i.e. suc-

cessively bisect the graph and the resulting parts until the desired number of parts is obtained [43,45,49,50,55,56]. This ap-
proach has the advantage of reducing the partitioning problem to a simpler one, namely bisection. Furthermore, if the
resulting parts of every bisection are equally sized, the overall partitioning will be balanced. In addition, bisection is inher-
ently a global approach, as the whole graph must be considered for splitting the system into two equally sized parts. Thus, it
can be expected to yield better results than a local approach, such as BFS.

We intend to construct a level set with N þ 2 levels, where N þ 2 is the maximum number of levels as determined by
Algorithm 1. To this end we start from an initial partitioning fV0;V1;VNþ1g, where V0 and VNþ1 contain the vertices of the
leads (requirement 2.2.i), and V1 all other vertices. The level set is then obtained by applying the bisection algorithm recur-
sively to V1 and the resulting subsets, until N levels are obtained, as shown schematically in Fig. 5. Here bisection means
splitting a set V i into two sets, V i1 and V i2 , such that V i1 [V i2 ¼ V i and V i1 \ V i2 ¼ ;. In oder to be applicable to the partitioning
Problem 2.2, the bisection must comply with certain requirements:
Fig. 4. Level set created by a BFS starting from V0. Different levels are shown in alternating shades of grey.

Fig. 5. Schematic depiction of recursive bisection.

M. Wimmer, K. Richter / Journal of Computational Physics 228 (2009) 8548–8565 8555
Problem 2.5. The bisection algorithm must be

(i) Compatible with a level set with N þ 2 levels.
(ii) Balanced.

(iii) Performed such that subsequent bisections may lead to a balanced level set.

Requirement 2.5.iii is formulated rather vaguely: usually there are many different choices how to perform a bisection. A
particular choice will influence the subsequent bisections (for a similar problem in graph partitioning see [56]), and thus the
bisection algorithm must in principle take into account all following bisection steps. Since an exact solution to that problem
seems computationally intractable, we will resort to heuristics there.

We start explaining how to comply with requirements 2.5.i and 2.5.ii. In the following we assume that N > 0, as N ¼ �1;0
are trivial cases. Then the initial partitioning fV0;V1;VNþ1g forms a level set, and so will the final result of the recursive bisec-
tion, if the result of every intermediate bisection yields a level set. For this, consider a set V i with vertices adjacent to the sets
V i left

and V iright
, where ‘‘left” (‘‘right”) is defined as being closer to V0ðVNþ1Þ. Then the sets resulting from the bisection, V i1 and

V i2 may only have vertices adjacent to V i left
,V i2 and V i1 ,V iright

, respectively.
Apart from the condition of forming a level set, requirement 2.5.i also dictates the total number of levels. Due to the nat-

ure of the recursive bisection, the number of final levels contained in an intermediate step is always well-defined. If a set V i

contains Ni levels, then V i1 and V i2 must contain Ni1 ¼ IntðNi=2Þ and Ni2 ¼ Ni � IntðNi=2Þ levels, respectively. Here, Intð. . .Þ
denotes rounding off to the next smallest integer. The bisection is thus balanced, if
Fig. 6.
(black)
Exampl
vertices
jV i1 j �
Ni1

Ni
jV ij and jV i2 j �

Ni2

Ni
jV ij: ð16Þ
Note that Ni can take any value, and usually is not a power of two.
From Lemma 2.4 we know that the minimum set of vertices necessary to form n levels is given by a BFS up to level n. Let

V i1 ;BFSðV i2 ;BFSÞ denote the set of vertices found by a BFS starting from V ileft
ðV iright

Þ up to level Ni1 ðNi2 Þ. Then, for any bisection
complying with requirement 2.5.i, V i1 ;BFS � V i1 and V i2 ;BFS � V i2 . These vertices are uniquely assigned to V i1 and V i2 and are
consequently marked as locked, i.e. later operations may not change this assignment. An example for the vertices found
in a BFS is shown in Fig. 6(a). Note that in the initial bisection, V i ¼ V1;Ni ¼ N;V ileft

¼ V0, and V ileft
¼ VNþ1.

The remaining unassigned vertices can be assigned to either set, and the bisection will still be compatible with a level set
containing N þ 2 vertices. Thus for complying with requirement 2.5.ii, any prescription obeying the balancing criterion may
be used. We choose to distribute the remaining vertices by continuing the BFS from V ileft

and V iright
and assigning vertices to

V i1 and V i2 depending on their distance to the left or right neighboring set, while additionally obeying the balancing criterion.
This approach—assigning vertices to levels according to their distance from the initial and final set—is rather intuitive and
probably the procedure that would be used if the level set were to be constructed ‘‘by hand”. This procedure may lead to
reasonable level sets, however, in general, additional optimization on the sets V i1 and V i2 is needed, as discussed below. If
this optimization is used, it can also be useful to distribute the unassigned vertices randomly, as this may help avoiding local
minima.
(a) Example showing for a disk-type geometry the BFS from the left and right neighboring sets that construct the minimal set of vertices V i1 ;BFS

and V i2 ;BFS (dark grey) that must be contained in V i1 and V i2 , respectively. The remaining vertices (light grey) can be assigned to either set. (b) and (c)
es illustrating the difference between cut edges and cut nets. The number of cut edges is 5 in both (b) and (c), while the number of cut nets (surface
) is 10 in (b) and 9 in (c).

8556 M. Wimmer, K. Richter / Journal of Computational Physics 228 (2009) 8548–8565
As mentioned above, there is a lot of arbitrariness in distributing the unassigned vertices into V i1 and V i2 . However, the
particular choice of the bisection will influence whether a later bisection is balanced or not: if V i1ði2Þ; BFS contains more ver-
tices than given by the balance criterion (16), the bisection cannot be balanced. Obviously, the BFS that constructs V i1ði2Þ;BFS

depends on the details of the set V i and thus on the details of the previous bisection step.
In order to formulate a criterion that may resolve the above mentioned arbitrariness and help to find a balanced level set,

it is useful to consider the matrix representation of the graph G. Bisecting a graph means ordering the corresponding matrix
into two blocks that are connected by an off-diagonal matrix Hi1 ;i2 :
ð17Þ
This off-diagonal matrix will be unchanged by further bisections and thus determines the minimum level width that can be
achieved. Therefore, the size of the off-diagonal matrices Hi1 ;i2 and Hi2 ;i1 should be minimized.

In a bisection, an edge ðv1;v2Þ 2 E is said to be cut, if v1 and v2 belong to different sets, i.e. v1 2 V i1 and v2 2 V i2 or vice
versa. The entries of Hi1 ;i2 correspond to edges cut by the bisection, and minimizing the number of entries in Hi1 ;i2 corre-
sponds to minimizing the number of edges cut by the bisection (min-cut criterion). The problem of finding a bisection min-
imizing the number of cut edges is generally referred to as graph partitioning, and commonly used to reorder matrices for
parallel computing.

However, the number of entries in Hi1 ;i2 is not directly related to the size of the matrix: instead of minimizing the number
of entries, it is better to minimize the number of columns and rows of Hi1 ;i2 which are conveniently represented by the hyper-
graph H ¼ ðV;NÞ corresponding to the matrix H.

A net nj of a hypergraph is said to be cut by a bisection, if any two vertices v1;v2 2 nj are contained in different sets V i1 and
V i2 . The total number of nonzero columns (and rows, since Hi2 ;i1 ¼ Hyi1 ;i2) in the matrices Hi1 ;i2 and Hi2 ;i1 is then given by the
number of cut nets. Thus, minimizing the number of cut nets (min-net-cut criterion) corresponds to minimizing the total
number of nonzero columns (and rows) in Hi1 ;i2 and Hi2 ;i1 . The problem of finding a bisection minimizing the number of
cut nets is generally referred to as hypergraph partitioning. The superiority of hypergraph partitioning over graph partition-
ing in the context of matrix reordering has first been noted in the context of block-tridiagonalization [49,50] and in the graph
partitioning problem for parallel computing [37,51].

In terms of the graph structure, a cut net corresponds to a surface vertex, i.e. a vertex with at least one edge cut by the
bisection. Since the vertices in V i1=2 ;BFS are determined by a BFS emanating from the surface vertices, minimizing the number
of cut nets (and hence the number of surface vertices) will usually also lead to a smaller number of vertices in V i1=2 ;BFS, leaving
more freedom towards achieving a balanced bisection. Fig. 6(b) and (c) shows a comparison of the min-cut and min-net-cut
criterion for simple examples. In practice, when minimizing the number of cut nets, we also use the min-cut criterion to
break ties between different bisections with the same number of cut nets (min-net-cut-min-cut criterion). Hence, in addition
to minimizing the total number of columns in Hi1 ;i2 and Hi2 ;i1 , we also minimize the number of entries. This helps to avoid
wide local minima, that occur frequently in the min-net-cut optimization problem.

Note that minimizing the total number of columns in Hi1 ;i2 and Hi2 ;i1 only minimizes the size of the matrix block containing
both Hi1 ;i2 and Hi2 ;i1 . In order to minimize the individual sizes of Hi1 ;i2 and Hi2 ;i1 it is desirable to also equilibrate the individual
number of columns (and rows) in Hi1 ;i2 and Hi2 ;i1 , and hence balance the number of surface vertices in V i1 and V i2 . In practice,
we have, however, found that the typical regular structure of matrices encountered in transport always automatically lead to
an approximately equal number of surface vertices in V i1 and V i2 , such that an explicit balancing was not necessary.

Both the min-cut and min-net-cut bisection problem have been shown to be NP-hard [57]. Therefore, only heuristics are
available to solve them. These heuristics start from an initial (balanced) bisection, such as constructed by the steps outlined
above, and improve upon this initial bisection. Here, we choose to use the Fiduccia–Mattheyses (FM) algorithm [45], as it is
suitable for both graph and hypergraph bisection. Furthermore, the FM algorithm can naturally deal with locked vertices that
may not be moved between sets, is reasonable fast and its underlying concepts are easy to understand. The FM heuristic is a
pass-based technique, i.e. it is applied repeatedly to the problem (several passes are performed), iteratively improving the
bisection. More detailed information about the fundamentals of the Fiduccia–Mattheyses algorithm and the implementation
are given in Appendix A.

We now summarize the steps outlined above and formulate an algorithm for bisection:

Algorithm 2. Bisection of set V i containing Ni levels, with left (right) neighboring set V ileft
ðV iright

Þ.

A. Stop, if Ni ¼ 1.
B. Do a BFS starting from V ileft

up to level Ni1 ¼ IntðNi=2Þ and a BFS starting from V iright
up to level Ni2 ¼ N � IntðNi=2Þ. The

vertices found by the BFS are assigned to V i1 and V i2 , respectively, and are marked as locked.

M. Wimmer, K. Richter / Journal of Computational Physics 228 (2009) 8548–8565 8557
C. Distribute the remaining unassigned vertices taking into account the balance criterion (16). The vertices may be
assigned according to either one of the following prescriptions:
Fig. 7.
with di
optimiz
(a) Continue the BFSs from step B and assign vertices to V i1 , if they are first reached by the BFS from V ileft
, and to V i2 ,

if they are first reached by the BFS from V iright
. If a set has reached the size given by the balance criterion, assign

all remaining vertices to the other set.
(b) Distribute the unassigned vertices randomly to V i1 and V i2 . If a set has reached the size given by the balance

criterion, assign all remaining vertices to the other set.

D. Optimize the sets V i1 and V i2 by changing the assignment of unlocked vertices according to some minimization crite-

rion. In particular, the following optimizations may be performed:

(a) No optimization.
(b) Min-cut optimization using the FM algorithm.
(c) Min-net-cut optimization using the FM algorithm.
(d) Min-net-cut-min-cut optimization using the FM algorithm.
Recursive application of the bisection Algorithm 2 then leads to an algorithm for constructing a level set complying with
the requirements of the partitioning Problem 2.2, and thus an algorithm for block-tridiagonalizing a matrix.

Algorithm 3. Block-tridiagonalization of matrix H

A. Construct the graph G ¼ ðV; EÞ corresponding to the matrix H, and the sets V0 and VNþ1 corresponding to the leads.
B. Use Algorithm 1 to determine the maximum number of levels N þ 2. If N < 1, stop.
C. Construct V1 ¼ V n ðV0 [VNþ1Þ, containing N levels.
D. Apply the bisection Algorithm 2 to V1 and then recursively on the resulting subsets. Do not further apply if a set only

contains one level.

It should be emphasized, that the block-tridiagonalization does not require any other input than the graph structure. In
principle, the number of FM passes may affect the result. However, from experience, this number can be chosen as a fixed
value, e.g. 10 FM passes, for all situations [45]. Thus, the block-tridiagonalization algorithm can serve as a black box.

In Fig. 7 we show examples of level sets arising from the natural ordering of grid points (Fig. 7(a), natural level set) and
from the block-tridiagonalization algorithm developed in this work (Fig. 7(b)–(d)) for the case of a disk-type geometry. The
level set in Fig. 7(b) arises from recursive bisection, where the vertices were distributed according to a BFS without any opti-
mization. The resulting level set strongly resembles the natural level set. This is due to the highly symmetric structure and
the fact that vertices are assigned to levels according to their distance from the leads—only small deviations are present due
Examples of level sets arising from (a) the natural ordering of grid points (as in Fig. 1), and application of the block-tridiagonalization Algorithm 3
stribution of vertices by BFS (Algorithm 2, step C(a)), (b) without further optimization, (c) with min-cut optimization, and (d) with min-net-cut
ation.

8558 M. Wimmer, K. Richter / Journal of Computational Physics 228 (2009) 8548–8565
to the balance criterion. When the bisection is optimized according to the min-cut criterion, Fig. 7(c), the resulting level set
changes little, as the min-cut criterion favors horizontal and vertical cuts for a square lattice, as presented in the example. In
contrast, min-net-cut optimization (Fig. 7(d)) yields a new, non-trivial level set that has less symmetry than the underlying
structure. Note that the minimization of surface vertices leads to levels in the form of ‘‘droplets”, analogous to surface ten-
sion in liquids.

In fact, we will show in Section 3 that min-net-cut optimization usually leads to level sets and thus block-tridiagonal
orderings that are superior to those arising from other methods. In particular, they are better than the natural level sets, lead-
ing to a significant speed-up of transport algorithms, as demonstrated in Section 3.1. In addition to that, the reordering algo-
rithms allow one to use conventional two-terminal transport algorithms also for more complicated, even multi-terminal
structures (see Sections 3.1 and 3.2).
2.2.3. Computational complexity
We conclude the theoretical considerations with an analysis of the computational complexity of Algorithms 2 and 3.
The bisection algorithm involves a BFS search on V i, which scales linearly with the number of edges within V i, and thus

has complexity OðjE ijÞ, where Ei is the set of edges within V i. In addition to that, a single optimization pass of the FM algo-
rithm scales also as OðjEijÞ [45] (for details on the implementation of the FM algorithm, see Appendix A). Usually, a constant
number of passes independent of the size of the graph is enough to obtain converged results, and therefore the optimization
process of several FM passes is also considered to scale as OðjEijÞ. Thus, the full bisection algorithm also has complexity
OðjEijÞ.

Usually, the number of edges per vertex is approximately homogeneous throughout the graph. Since the recursive bisec-
tion is a divide-and-conquer approach, the computational complexity of the full block-tridiagonalization algorithm is then
OðjEj log jEjÞ [54]. In typical graphs arising from physics problems, the number of edges per vertex is a constant, and the com-
putational complexity can be written as OðNgrid log NgridÞ, where Ngrid is the number of vertices in V, or the size of the matrix
H.

In contrast, many quantum transport algorithms, such as the recursive Green’s function technique, scale as
OðNðN grid=NÞ3Þ ¼OðN3

grid=N2Þ in the optimal case of N equally sized matrix blocks (levels) of size Ngrid=N. Often, the number
of blocks (levels) N / Na

grid. Typically, to name a few examples, a ¼ 1 in one-dimensional chains, a ¼ 1=2 in two dimensions,
and the transport calculation scales as OðN3�2a

grid Þ. Thus, except for the case of a linear chain, where N ¼ Ngrid and matrix reor-
dering is pointless anyways, the block-tridiagonalization algorithm always scales more favorably than the quantum trans-
port algorithms. This scaling implies that the overhead of the matrix reordering in the transport calculation will become
more negligible, the larger the system size.

3. Examples: charge transport in two-dimensional systems
3.1. Ballistic transport in two-terminal devices

We now evaluate the performance of the block-tridiagonalization algorithm using representative examples from meso-
scopic physics. The Schrödinger equation for the two-dimensional electron gas (2DEG) is usually transformed into a tight-
binding problem by the method of finite differences [7–9], where the continuous differential equation is replaced by a set
of linear equations involving only the values of the wave function on discrete grid points. Commonly, these points are ar-
ranged in a regular, square grid. This grid, together with the shape of the particular structure under consideration then de-
fines the structure of the Hamilton matrix and the corresponding graph.

The representative examples considered here are shown in Fig. 8: the circle (Fig. 8(a)) and the asymmetric Sinai billiard
(Fig. 8(b)) that are examples of integrable and chaotic billiards in quantum chaos, respectively, the ring (Fig. 8(c)) that may
exhibit various interference physics, and the circular cavity with leads that are not parallel (Fig. 8(d)) as an example of a
structure that does not have an intuitive, natural block-tridiagonal ordering. For all these structures, we introduce a length
scale dextent, given by the outer radius of the circular structures and the side length of the square structure, characterizing the
maximum extent. The fineness of the grid, and thus the size of the corresponding graph will be measured in number of grid
points per length dextent.

We now apply the block-tridiagonalization algorithm using the various optimization criteria discussed in the previous
section, and compare the resulting orderings with the natural ordering and the ordering generated by the GPS algorithm.
The weights wðHÞ, Eq. (14), of the different orderings are given in Table 1.

The initial distributions for the bisection algorithm are done in two different ways: the vertices are distributed both in an
ordered way—by BFS—and randomly. The outcome after the optimization, however, is always similar for both types of initial
distributions which indicates that the resulting weights are close to the global minimum and not stuck in a local minimum.
Note that we use twice as many FM passes for a random initial distribution than for an initial distribution by BFS, as con-
vergence is usually slower for a random initial distribution.

In all examples, the min-net-cut criterion yields orderings with the best weights, as expected from the considerations of
the previous section. Based on the weight, orderings according to this criterion are expected to give the best performance in
transport calculations such as the RGF algorithm. Note that the min-net-cut-min-cut ordering is on average closest to the

Fig. 8. Typical examples of structures considered in two-dimensional mesoscopic systems: (a) circle billiard, (b) asymmetric Sinai billiard, (c) ring, and (d)
circular cavity with perpendicular leads. The tight-binding grid arises from the finite difference approximation to the Schrödinger equation. Note that the
number of grid points used here was deliberately chosen very small for visualization purposes. In a real calculation, the number of grid points would be at
least two orders of magnitude larger. dextent denotes a length characterizing the extent for the different structures.

Table 1
Weights wðHÞ, Eq. (14), for the block-tridiagonal ordering constructed by different algorithms for the examples of Fig. 8. Optimization was done by 10 passes of
the FM algorithm, when the initial bisection was constructed by BFS (Algorithm 2, step C(a)), and 20 passes, when the initial bisection was constructed by a
random distribution of vertices (Algorithm 2, step C(b)). The minimal weights for each system are printed bold. In all examples, there were 400 grid points per
length dextent .

Circular billiard Asymmetric Sinai billiard Ring Cavity with perp. leads

Natural block-tridiagonal ordering 1:51� 1010 1:58� 1010 8:72� 108 –

Gibbs–Poole–Stockmeyer 1:15� 1012 7:84� 1011 2:14� 108 7:05� 1012

Distribution by BFS, no optimization 1:51� 1010 9:29� 109 2:1� 108 1:69� 1010

Distribution by BFS, min-cut 1:51� 1010 9:67� 109 2:1� 108 1:59� 1010

Random distribution, min-cut 2:22� 1010 9:95� 109 2:1� 108 5:13� 1010

Distribution by BFS, min-net-cut 1:51� 1010 9:46� 109 2:1� 108 1:18� 1010

Random distribution, min-net-cut 1:46� 1010 9:0� 109 2:09� 108 1:18� 1010

Distribution by BFS, min-net-cut-min-cut 1:26� 1010 9:28� 109 2:08� 108 1:24� 1010

Random distribution, min-net-cut-min-cut 1:27� 1010 9:16� 109 2:09� 108 2:02� 1010

M. Wimmer, K. Richter / Journal of Computational Physics 228 (2009) 8548–8565 8559
best ordering. The min-net-cut ordering sometimes suffers from slow convergence, when the algorithm must traverse a wide
local minimum. The additional min-cut criterion helps to break ties and thus avoids these wide local minima.

Except for the ring, where all algorithms perform well, the GPS algorithm yields weights that are even larger than the
weight of the natural ordering. As discussed above, the GPS algorithms performs well, if both leads are furthest apart in
terms of the graph. In the case of the ring, this is approximately fulfilled. In the general case, when the leads are at arbitrary
positions, the GPS algorithm usually produces some very large levels. As the level size enters cubically in the wðHÞ, this re-
sults in a prohibitively large weight. The GPS algorithm thus cannot be used as a generic reordering algorithm for quantum
transport according to Problem 2.2.

In summary, the block-tridiagonalization Algorithm 3 in the combination of initial distribution by BFS and min-net-cut-
min-cut optimization yields the best reorderings with respect to the weight wðHÞ. Experience shows that usually 10 FM passes
are enough for optimizing a bisection. As a consequence, we will use this combination exclusively in the rest of this work.

The weight wðHÞ of a matrix is a global measure of the quality of a ordering. Additional insight can be gained from the
distribution of the sizes Mi of the matrix blocks/levels. In Fig. 9 we show this distribution before and after reordering. For
the natural ordering of the finite difference grids, the number of matrix blocks is determined by the number of lattice points
along the x-coordinate direction (see Fig. 1(b)). In contrast, the number of matrix blocks after reordering is given by the
length of the shortest path between the two leads, in terms of the corresponding graph.

0 100 200 300 400
0

100

200

300

400

le
ve

l/
bl

oc
k

si
ze

0 100 200 300 400
0

100

200

300

400

le
ve

l/
bl

oc
k

si
ze

0 200 400 600

level/block index i

0

50

100

150

200

250

0 100 200 300 400
0

100

200

300

400

(a)

(c)

(b)

(d)

Fig. 9. Level (matrix block) size Mi as a function of the level (matrix block) index i for the natural level set (dashed line) and the min-net-cut-min-cut
reordering (solid line), shown for (a) the circle billiard, (b) the asymmetric Sinai billiard, (c) the ring, and (d) the circular cavity with perpendicular leads.
Note that for (d), there is no natural ordering. In all examples, there were 400 grid points per length dextent.

8560 M. Wimmer, K. Richter / Journal of Computational Physics 228 (2009) 8548–8565
In the case of the circle billiard, Fig. 9(a), the number of matrix blocks is the same for the natural ordering and the reor-
dered matrix, as the shortest path between the leads is simply a straight line along the x-coordinate direction. The improve-
ments in the weight originate only from balancing the matrix block sizes: While the matrix block sizes vary for the natural
ordering—the lateral size changes along the x-direction—the reordered matrix has equally sized matrix blocks. For this par-
ticular example, the result of the block-tridiagonalization algorithm is optimal, as it yields the best solution with respect to
the requirements set forth in Problems 2.1 and 2.2. Note that it is not always possible to find a perfectly balanced partition-
ing, but the circle billiard is such an example.

In contrast, in the case of the asymmetric Sinai billiard and the ring the number of matrix blocks generated by the block-
tridiagonalization algorithm is larger than in the natural ordering (see Fig. 9(b) and (c), respectively). In both cases, the obsta-
cle within the scattering region increases the length of the shortest path connecting the two leads. In both examples, this
increase in the number of matrix blocks leads to a significantly decreased weight wðHÞ with respect to the natural ordering,
although the partitioning is only approximately balanced. For instance, in the particular case of the ring, the number of ma-
trix blocks after reordering is approximately given by the number of lattice points around half of the circumference. The
reordered ring thus has a weight very similar to a straight wire with a width twice as large as the width of one arm of
the ring, and a length given by half of the ring circumference.

For the cavity with perpendicular leads, there is no natural ordering, and a specialized transport algorithm would be re-
quired. The reordering creates a matrix with approximately balanced block sizes, and allows the direct application of con-
ventional algorithms.

The weight wðHÞ was introduced as a theoretical concept in order to simulate the computational complexity of a trans-
port calculation. After discussing the influence of the reordering on this theoretical concept, we now demonstrate how the
reordering increases the performance of an actual quantum transport calculation.

To this end we use a straight-forward implementation of the well-established recursive Green’s function algorithm for
two terminals, as described in Ref. [29]. The necessary linear algebra operations are performed using the ATLAS implemen-
tation of LAPACK and BLAS [58,59], optimized for specific processors. It should be emphasized that the code that does the
actual transport calculation—such as calculation of the Green’s function and evaluation of the Fisher–Lee relation—is the
same for all examples considered here, including the non-trivial cavity with perpendicular leads. The abstraction necessary
for the reordering, i.e. the graph structure and the corresponding level set, allows for a generic computational code applicable
to any tight-binding model.

We measure the performance gain through matrix reordering as
rcpu-time ¼
computing time for natural ordering
computing time for reordered matrix

: ð18Þ
Note that during a real calculation, the conductance is usually not only calculated once, but repeatedly as a function of some
parameters, such as Fermi energy or magnetic field. Thus, the respective quantum transport algorithm is executed repeat-
edly, too. In contrast, the block-tridiagonalization has to be carried out again only when the structure of the matrix and thus
the corresponding graph changes. For the examples considered here this would correspond to changing the grid spacing or

M. Wimmer, K. Richter / Journal of Computational Physics 228 (2009) 8548–8565 8561
the shape of the structure. In such a case, the overhead of matrix reordering must be taken into account for rcpu-time. This over-
head can be quantified as
overhead of matrix reordering

Fig. 10
asymm
rcpu-time

as a fu
perpen
rmatrix reordering ¼ computing time including reordering
: ð19Þ

pical calculation, however, the matrix structure given by the underlying tight-binding grid does not change, and the
In a ty
matrix reordering must be carried out only once. In this common situation, the overhead of matrix reordering is negligible.
For example, any change of physical parameters such as Fermi energy, magnetic field or disorder averages does not change
the matrix structure.

In Fig. 10 we show the performance gain through matrix reordering, rcpu-time, as a function of grid size for the circle billiard,
the asymmetric Sinai billiard, and the ring (Fig. 10(a)–(c), respectively). We include both measurements excluding and
including the overhead of matrix reordering, as discussed above. Remember that in the case of the cavity with perpendicular
leads, Fig. 8(d), there is no natural ordering and thus a performance comparison is not possible. In fact for this system, only
matrix reordering makes a transport calculation possible in the first place.

We find that block-tridiagonalization always increases the algorithmic performance in the typical situation, when the
overhead of matrix reordering can be neglected. However, even if the reordering overhead is taken into account, we see a
significant performance gain except for small systems—but there the total computing time is very short anyway. In fact,
as the system sizes increases, the overhead of reordering becomes negligible, as predicted from the analysis of the compu-
tational complexity, and the performance gains including and excluding the reordering overhead converge. This can also be
seen in Fig. 10(d), where we show the reordering overhead rmatrix reordering as a function of system size.

Especially for large systems, the total computing time can become very long, and any performance gain is beneficial. Reor-
dering leads to significant performance gains up to a factor of 3 in the case of the ring. The performance gain rcpu-time can also
be estimated from the weights wðHÞ, Eq. (14), of the original matrix (the natural ordering) and the reordered matrix, shown
as the dashed line in Fig. 10(a)–(c). The actual, measured performance gain approaches this theoretical value, as the system
size increases, demonstrating that wðHÞ models the actual performance of a quantum transport algorithm appropriately.
Note that we do not fully reach the theoretically predicted performance gain in the case of the ring. On modern computer
architectures, computing time does not only depend on the number of arithmetic operations [59], and thus the weight wðHÞ
overestimates the performance gain, though the performance still improves significantly.

Finally, we demonstrate theOðNgrid log NgridÞ scaling of the reordering algorithm. Fig. 11 shows the computing times of the
block-tridiagonalization algorithm as a function of matrix/graph size N for the geometries considered in this section. For all
systems, the computing times scale according to the prediction from the complexity analysis in Section 2.2.3, as apparent
from the fit / N grid log Ngrid. Note that for large Ngrid;OðNgrid log NgridÞ scaling is practically indistinguishable from OðNgridÞ-
scaling, as can also be seen in Fig. 11.
0 200 400 600 800 1000
0.4

0.6

0.8

1

1.2

1.4

1.6

r cp
u-

tim
e

0 500 1000
0.5

1

1.5

2

2.5
r cp

u-
tim

e

0 500 1000 1500
0

1

2

3

4

5

r cp
u-

tim
e

0 500 1000 1500 2000

grid points per length d
extent

0.01

0.1

1

r m
at

ri
x

re
or

de
ri

ng
(a) (b)

(c) (d)

. (a)–(c) Relative gain in computational time r cpu-time, Eq. (18), through the reordering as a function of the grid size for the circular billiard, the
etric Sinai billiard, and the ring, respectively. rcpu-time is shown excluding ð�Þ and including ð�Þ the overhead of matrix reordering. The estimate for
from the weights wðHÞ of the different orderings is shown as a dashed line. (d) Fraction of time rmatrix reordering, Eq. (19), used for reordering the matrix
nction of the grid size. Data is shown for the circular billiard ð�Þ, the asymmetric Sinai billiard ð�Þ, the ring ðMÞ, and the circular cavity with
dicular leads (+). The benchmarks were run on Pentium 4 processor with 2.8 GHz and 2 GBs of memory.

Fig. 11. Time spent for matrix reordering as a function of the total grid (matrix) size N, for the circular billiard ð�Þ, the asymmetric Sinai billiard ð�Þ, the
ring ðMÞ, and the circular cavity with perpendicular leads (+). The solid line is a fit to the predicted scaling of the computational complexity, N log N.

8562 M. Wimmer, K. Richter / Journal of Computational Physics 228 (2009) 8548–8565
In the examples of this section, we considered the pedagogic case of charge transport on a square, finite difference grid.
The approach presented here can, however, immediately applied to more complex situations, such as spin transport, as re-
viewed in Ref. [60]. In addition, extending the transport calculation to a different grid is straight-forward, as any tight-bind-
ing grid can be encoded into a graph. The block-tridiagonalization algorithm has already been applied to the case of the
hexagonal grid of graphene [61] (for a review on graphene see [62]). A further example of this versatility is shown in the
next section, where we apply the block-tridiagonalization algorithm to solve multi-terminal structures involving different
tight-binding models.
3.2. Multi-terminal structures

In the previous section, we demonstrated that matrix reordering increases the performance of quantum transport algo-
rithms for two-terminal structures and additionally makes it possible to apply these conventional algorithms to non-trivial
structures. Whereas there is a great variety of quantum transport algorithms for systems with two leads, there are only few
algorithms that are suitable for multi-terminal structures, and most of them are restricted to rather specific geometries (e.g.
Ref. [30]). Only recently algorithms have been developed that claim to be applicable to any multi-terminal structure. The
knitting algorithm of Ref. [63] is a variant of the RGF algorithm where the system is built up adding every lattice point indi-
vidually, instead of adding whole blocks of lattice points at a time. Therefore, instead of a matrix multiplication, the central
computational step is an exterior product of vectors. Unfortunately, this implies that the knitting algorithm cannot use
highly optimized matrix multiplication routines (Level 3 BLAS operations), that are usually much more efficient than their
vector counterparts (Level 2 BLAS operations), as discussed in Ref. [59]. Another multi-terminal transport algorithm pre-
sented recently [64], is based on the transfer matrix approach. However, it requires the Hamiltonian to be in a specific
block-tridiagonal form, and the corresponding level set is set up manually.

Here we show how to employ the block-tridiagonalization algorithm in order to apply the well-established two-terminal
quantum transport algorithms to an arbitrary multi-terminal system. The basic idea is sketched in Fig. 12(a): combining sev-
eral (real) leads into only two virtual leads, the multi-terminal problem is reduced to an equivalent two-terminal problem.
After reordering, the resulting problem can then be solved by conventional two-terminal algorithms. Note that in this ap-
proach the number of matrix blocks is given by the shortest path between leads in two different virtual leads. If all leads
are very close together, this may lead to only few, large blocks in the reordered matrix and, respectively, levels in the graph
partitioning, leading to a very large weight wðHÞ. In such a case it is advisable to collect all leads into a single virtual lead. The
second virtual lead is then formed by a vertex in the graph, that is furthest away from all leads as depicted in Fig. 12(b). Such
a vertex can be found by a BFS search originating from all leads. Thereby the number of matrix blocks/levels is maximized. In
fact, this approach yields a block-tridiagonal matrix structure as required by the algorithm of Ref. [64].
Fig. 12. A multi-terminal structure can be reduced to an equivalent two-terminal structure by collecting all leads in two virtual leads. (a) The leads are
redistributed into two virtual leads. (b) All leads are combined in a single virtual lead, the second virtual lead is formed by a vertex furthest away.

Fig. 13. Example of a four-terminal calculation: quantum Hall effect (a) in a two-dimensional electron gas and (b) in graphene. The Hall resistance RH is
shown as a function of W=lcycl , where W is the width of the Hall bar and lcycl the cyclotron radius in a magnetic field B. Note that W=l cycl / B. The dotted lines
indicate the quantized values of the Hall resistance, h=2e2 � n�1, where n is a positive integer.

M. Wimmer, K. Richter / Journal of Computational Physics 228 (2009) 8548–8565 8563
We now demonstrate these strategies on the example of the quantum Hall effect (QHE) in a 2DEG formed in a semicon-
ductor heterostructure [65] and in graphene [66]. For this we use a four-terminal Hall bar geometry as sketched in Fig. 12(a),
on top of a square lattice (finite difference approximation to 2DEG) and a hexagonal lattice. Again, it should be emphasized
that the code of the actual transport calculation is the same as employed in the two-terminal examples of the previous sec-
tion. The results of the calculation are shown in Fig. 13, where the integer QHE of the 2DEG and the odd-integer QHE of
graphene are clearly visible.

The methods outlined above make it possible to calculate quantum transport in any system described by a tight-binding
Hamiltonian. This generality is one of the main advantages gained by using the matrix reordering. However, generality also
implies that it is difficult to make use of properties of specific systems, such as symmetries, in order to speed-up calculations.
Special algorithms developed specifically for a certain system however can, and will usually be faster than a generic ap-
proach—at the cost of additional development time.

In the case of the Hall geometry in a 2DEG, such a special algorithm was presented by Baranger et al. [30], and we have
implemented a variant of it. Comparing the computing times for the Hall bar geometry in a 2DEG, we find that the special
algorithm is only a factor of 1.6–1.7 faster than our generic approach. Although such a performance comparison may depend
crucially on the details of the system under consideration, experience shows that the use of the generic approach often does
not come with a big performance penalty.

4. Conclusions

We have developed a block-tridiagonalization algorithm based on graph partitioning techniques that can serve as a pre-
conditioning step for a wide class of quantum transport algorithms. The algorithm can be applied to any Hamiltonian matrix
originating from an arbitrary tight-binding formulation and brings this matrix into a form that is more suitable for many
two-terminal quantum transport algorithms, such as the widely used recursive Green’s function algorithm. The advantages
of this reordering are twofold: first, the reordering can speed-up the transport calculation significantly. Second, it allows for
applying conventional two-terminal algorithms to non-trivial geometries including non-collinear leads and multi-terminal
systems. The block-tridiagonalization algorithm scales as OðNgrid log NgridÞ, where Ngrid is the size of the Hamiltonian matrix,
and thus induces only little additional overhead. We have demonstrated the performance of the matrix reordering on rep-
resentative examples, including transport in 2DEGs and graphene.

The block-tridiagonalization algorithm can operate as a black box and serve as the foundation of a generic transport code
that can be applied to arbitrary tight-binding systems. Such a generic transport code is desirable, as it minimizes develop-
ment time and increases code quality, as only few basic transport routines are necessary, that can be tested thoroughly.

5. Acknowledgments

We acknowledge financial support from DFG within GRK639 and SFB689.

Appendix A. The Fiduccia–Mattheyses algorithm

A.1. Basic idea

The Fiduccia–Mattheyses (FM) algorithm [45] is a variant of the Kernighan–Lin (KL) algorithm [43,44]. Both algorithms
are heuristics to improve an existing graph or hypergraph bisection, and are based on the concept of gain. The gain of a vertex

8564 M. Wimmer, K. Richter / Journal of Computational Physics 228 (2009) 8548–8565
in a bisection is defined as the change in weight, namely the number of cut edges or nets, that occurs when this vertex is
moved to the other part. This gain can also be negative, if such a move increases the number of cut edges or nets. The basic
idea of the FM algorithm is to move a vertex with the highest gain from one part to the other, while obeying some balance
criterion. In contrast, the KL heuristic is based on swapping pairs of vertices with the highest gain. The fact that the highest
gain can be negative, helps the FM algorithm to escape local minima. In particular, the vertex with the highest gain may not
be a surface vertex. After moving, the respective vertex is locked in order to avoid an infinite loop, where a single vertex
might be swapped back and forth repeatedly. The FM pass ends, when all (free) vertices have been moved, and the best bisec-
tion encountered during the pass is returned as result. Further passes can then successively improve on this bisection.

Due to the restriction of moving a single vertex and a clever use of data structures (see Appendix A.2), in the case of graph
partitioning a FM pass scales linearly with the number of edges in the graph G ¼ ðV; EÞ;OðjEjÞ, whereas a KL pass scales cubi-
cally with the number of vertices, OðjVj3Þ. Note that in the case of hypergraph bisection,H ¼ ðV;NÞ, a FM pass scales in prin-
ciple linearly with the sum of the number of vertices in all nets, Oð

P
jjnjjÞ [45]. However, for hypergraphs arising from

structurally symmetric matrices with a nonzero diagonal,
P

jjnjj � jEj, as seen from Eq. (15). Because of this linear scaling,
the FM algorithm is preferable to the KL heuristic.

A.2. Implementation

We have implemented the FM algorithm as described originally by Fiduccia and Mattheyses [45]. In particular, we use a
bucket list in order to efficiently choose a vertex with the highest gain. This is possible, as the absolute value of the maximum
vertex gain is bounded: for graph partitioning, the vertex gain can take values in the range �pe;max; . . . ; pe;max, where pe;max is
the maximum number of incident edges to a vertex. For hypergraph partitioning, the range is �pn;max; . . . ; pn;max, where pn;max

is the maximum number of incident nets to a vertex. Note that for a structurally symmetric matrix with a nonzero diagonal
pn;max ¼ pe;max þ 1, as seen from Eq. (15).

For the problem of min-net-cut-min-cut optimization both the graph and the hypergraph structure, and hence the vertex
gains both in terms of nets, gnet, and in terms of edges, gedge, are considered simultaneously. It is then useful to define a global
gain
g0 ¼ gnet � ð2pe;max þ 1Þ þ gedge ðA:1Þ
which can take values in the range �p0max; . . . ; p0max, where p0max ¼ 2pe;max � pn;max þ pe;max þ pn;max.

References

[1] R. Landauer, Spatial variation of currents and fields due to localized scatterers in metallic conduction, IBM J. Res. Dev. 1 (3) (1957) 223.
[2] M. Büttiker, Y. Imry, R. Landauer, S. Pinhas, Generalized many-channel conductance formula with application to small rings, Phys. Rev. B 31 (10) (1985)

6207–6215.
[3] A.D. Stone, A. Szafer, What is measured when you measure a resistance? – the Landauer formula revisited, IBM J. Res. Dev. 32 (3) (1988) 384–413.
[4] D.S. Fisher, P.A. Lee, Relation between conductivity and transmission matrix, Phys. Rev. B 23 (12) (1981) 6851–6854.
[5] H.U. Baranger, A.D. Stone, Electrical linear-response theory in an arbitrary magnetic field: a new Fermi-surface formation, Phys. Rev. B 40 (12) (1989)

8169–8193.
[6] H. Haug, A.-P. Jauho, Quantum Kinetics in Transport and Optics of Semiconductors, Springer, Berlin, Heidelberg, 1998.
[7] G.E. Kimball, G.H. Shortley, The numerical solution of Schrödinger’s equation, Phys. Rev. 45 (11) (1934) 815–820.
[8] L. Pauling, E.B. Wilson, Introduction to Quantum Mechanics, Dover, New York, 1935.
[9] D. Frustaglia, M. Hentschel, K. Richter, Aharonov–Bohm physics with spin. II. Spin-flip effects in two-dimensional ballistic systems, Phys. Rev. B 69 (15)

(2004) 155327.
[10] P. Havu, V. Havu, M.J. Puska, R.M. Nieminen, Nonequilibrium electron transport in two-dimensional nanostructures modeled using green’s functions

and the finite-element method, Phys. Rev. B 69 (11) (2004) 115325.
[11] R.C. Bowen, G. Klimeck, R.K. Lake, W.R. Frensley, T. Moise, Quantitative simulation of a resonant tunneling diode, J. Appl. Phys. 81 (7) (1997) 3207–

3213.
[12] S. Sanvito, C.J. Lambert, J.H. Jefferson, A.M. Bratkovsky, General Green’s-function formalism for transport calculations with spd Hamiltonians and giant

magnetoresistance in Co- and Ni-based magnetic multilayers, Phys. Rev. B 59 (18) (1999) 11936–11948.
[13] M. Luisier, A. Schenk, W. Fichtner, G. Klimeck, Atomistic simulation of nanowires in the sp3d5s	 tight-binding formalism: from boundary conditions to

strain calculations, Phys. Rev. B 74 (20) (2006) 205323.
[14] M. Brandbyge, J.-L. Mozos, P. Ordejón, J. Taylor, K. Stokbro, Density-functional method for nonequilibrium electron transport, Phys. Rev. B 65 (16)

(2002) 165401.
[15] A. Di Carlo, A. Pecchia, L. Latessa, T. Frauenheim, G. Seifert, Tight-binding DFT for molecular electronics (gDFTB), in: G. Cuniberti, G. Fagas, K. Richter

(Eds.), Introducing Molecular Electronics, Springer, Berlin, Heidelberg, 2006, pp. 153–184.
[16] A.R. Rocha, V.M. Garcı́a-Suárez, S. Bailey, C. Lambert, J. Ferrer, S. Sanvito, Spin and molecular electronics in atomically generated orbital landscapes,

Phys. Rev. B 73 (8) (2006) 085414.
[17] S. Datta, Electronic Transport in Mesoscopic Transport, Cambridge University Press, Cambridge, 2002.
[18] D.K. Ferry, S.M. Goodnick, Transport in Nanostructures, Cambridge University Press, Cambridge, 2001.
[19] M.P. Lopez Sancho, J.M. Lopez Sancho, J. Rubio, Quick iterative scheme for the calculation of transfer matrices: application to Mo(100), J. Phys. F: Met.

Phys. 14 (5) (1984) 1205–1215.
[20] M.P. Lopez Sancho, J.M. Lopez Sancho, J. Rubio, Highly convergent schemes for the calculation of bulk and surface Green functions, J. Phys. F: Met. Phys.

15 (4) (1985) 851–858.
[21] P.S. Krstić, X.-G. Zhang, W.H. Butler, Generalized conductance formula for the multiband tight-binding model, Phys. Rev. B 66 (20) (2002) 205319.
[22] T. Usuki, M. Takatsu, R.A. Kiehl, N. Yokoyama, Numerical analysis of electron-wave detection by a wedge-shaped point contact, Phys. Rev. B 50 (11)

(1994) 7615–7625.
[23] T. Usuki, M. Saito, M. Takatsu, R.A. Kiehl, N. Yokoyama, Numerical analysis of ballistic-electron transport in magnetic fields by using a quantum point

contact and a quantum wire, Phys. Rev. B 52 (11) (1995) 8244–8255.

[24] C.J. Lambert, D. Weaire, Decimation and Anderson localization, Phys. Stat. Solidi (b) 101 (2) (1980) 591–595.
[25] M. Leadbeater, C.J. Lambert, A decimation method for studying transport properties of disordered systems, Ann. Phys. 7 (5-6) (1998) 498–502.
[26] D. Mamaluy, D. Vasileska, M. Sabathil, T. Zibold, P. Vogl, Contact block reduction method for ballistic transport and carrier densities of open

nanostructures, Phys. Rev. B 71 (24) (2005) 245321.
[27] D.J. Thouless, S. Kirkpatrick, Conductivity of the disordered linear chain, J. Phys. C: Solid State Phys. 14 (3) (1981) 235–245.
[28] P.A. Lee, D.S. Fisher, Anderson localization in two dimensions, Phys. Rev. Lett. 47 (12) (1981) 882–885.
[29] A. MacKinnon, The calculation of transport properties and density of states of disordered solids, Z. Phys. B 59 (4) (1985) 385–390.
[30] H.U. Baranger, D.P. DiVincenzo, R.A. Jalabert, A.D. Stone, Classical and quantum ballistic-transport anomalies in microjunctions, Phys. Rev. B 44 (19)

(1991) 10637–10675.
[31] R. Lake, G. Klimeck, R.C. Bowen, D. Jovanovic, Single and multiband modeling of quantum electron transport through layered semiconductor devices, J.

Appl. Phys. 81 (12) (1997) 7845–7869.
[32] A. Lassl, P. Schlagheck, K. Richter, Effects of short-range interactions on transport through quantum point contacts: a numerical approach, Phys. Rev. B

75 (4) (2007) 045346.
[33] P. Drouvelis, P. Schmelcher, P. Bastian, Parallel implementation of the recursive Green’s function method, J. Comput. Phys. 215 (2) (2006) 741–756.
[34] T. Kramer, E.J. Heller, R.E. Parrott, An efficient and accurate method to obtain the energy-dependent green function for general potentials, J. Phys.: Conf.

Ser. 99 (2008) 012010.
[35] S. Rotter, J.-Z. Tang, L. Wirtz, J. Trost, J. Burgdörfer, Modular recursive Green’s function method for ballistic quantum transport, Phys. Rev. B 62 (3)

(2000) 1950–1960.
[36] S. Rotter, B. Weingartner, N. Rohringer, J. Burgdörfer, Ballistic quantum transport at high energies and high magnetic fields, Phys. Rev. B 68 (16) (2003)

165302.
[37] U.V. Çatalyürek, C. Aykanat, Decomposing irregularly sparse matrices for parallel matrix-vector multiplication, Lect. Notes Comput. Sci. 1117 (1996)

75–86.
[38] U.V. Çatalyürek, C. Aykanat, Hypergraph-partitioning-based decomposition for parallel sparse-matrix vector multiplication, IEEE Trans. Parallel Distr.

Syst. 10 (7) (1999) 673–693.
[39] N.E. Gibbs, J. William, G. Poole, P.K. Stockmeyer, An algorithm for reducing the bandwidth and profile of a sparse matrix, SIAM J. Numer. Anal. 13 (2)

(1976) 236–250.
[40] E. Cuthill, J. McKee, Reducing the bandwidth of sparse symmetric matrices, in: Proceedings of the 24th National Conference, ACM, New York, 1969, pp.

157–172.
[41] A. George, Computer implementation of the finite element method, Tech. Rep. STAN-CS-71-208, Computer Sci. Dept., Stanford Univ., Stanford, CA,

1971.
[42] W.-H. Liu, A.H. Sherman, Comparative analysis of the Cuthill–McKee and the reverse Cuthill–McKee ordering algorithms for sparse matrices, SIAM J.

Numer. Anal. 13 (2) (1976) 198–213.
[43] B. Kernighan, S. Lin, An efficient heuristic procedure for partitioning graphs, Bell Syst. Technol. J. 49 (2) (1970) 291–308.
[44] D.G. Schweikert, B.W. Kernighan, A proper model for the partitioning of electrical circuits, in: DAC’72: Proceedings of the 9th Workshop on Design

Automation, ACM, New York, NY, USA, 1972, pp. 57–62.
[45] C.M. Fiduccia, R.M. Mattheyses, A linear-time heuristic for improving network partitions, in: DAC’82: Proceedings of the 19th Conference on Design

Automation, IEEE Press, Piscataway, NJ, USA, 1982, pp. 175–181.
[46] G. Karypis, V. Kumar, Multilevel k-way hypergraph partitioning, VLSI Des. 11 (3) (2000) 285–300.
[47] B. Hendrickson, E. Rothberg, Improving the run time and quality of nested dissection ordering, SIAM J. Sci. Comput. 20 (2) (1998) 468–489.
[48] J. O’Neil, D.B. Szyld, A block ordering method for sparse matrices, SIAM J. Sci. Stat. Comput. 11 (5) (1990) 811–823.
[49] A. Coon, M. Stadtherr, Generalized block-tridiagonal matrix orderings for parallel computation in process flowsheeting, Comput. Chem. Eng. 19 (1995)

787–805.

	Optimal block-tridiagonalization of matrices for coherent charge transport
	Introduction
	Optimal block-tridiagonalization of matrices
	Definition of the problem
	Definition of the matrix reordering problem
	Mapping onto a graph partitioning problem

	Matrix reordering by graph partitioning
	A local approach—breadth-first-search
	A global approach—recursive bisection
	Computational complexity

	Examples: charge transport in two-dimensional systems
	Ballistic transport in two-terminal devices
	Multi-terminal structures

	Conclusions
	Acknowledgments
	The Fiduccia–Mattheyses algorithm
	Basic idea
	Implementation

	References

